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INTRODUCTION

There have been dramatic technical advances during the past twenty to thirty years in
the field of educational and psychological testing. Paramount among these advances has been
the ongoing development of item response theory (IRT). Although IRT holds a great deal of
promise as a successor to more classical (i.e., true and error score) test theories, it has not
been widely used by test practitioners.

The basis of IRT is the item response function (IRF; sometimes referred to as the item
characteristic curve, ICC) which relates an examinee's trait/ability level (6) to his/her
probability of correctly answering the item. The IRF is a mathematical function that is defined
by certain item parameters which, in practice, are never known but must be estimated from
observed data. The process of item parameter estimation (sometimes referred to as item
calibration) is one of the most difficult and important tasks in IRT and, unfortunately, one of
the least understood.

Since item parameter estimation is so difficult, there is no single accepted method for
accomplishing it. At least five theoretically distinct approaches have been taken with
estimation in the 3-parameter IRT model. These item parameter estimation techniques include
(1) approximation techniques, (2) minimum chi-square estimation techniques, (3) maximum-
likelihood estimation techniques, (4) Bayesian estimation techniques, and (5) marginal
maximum-likelihood estimation techniques. A detailed description of each technique is well
beyond the scope of the present paper and the interested reader is referred to Baker (1987).

If IRT is to function in practical application as well as the theory predicts, accurate
estimates of the item parameters are essential. Estimation of item parameters is, however, one
of the major obstacles IRT poses for the practitioner. Due to the mathematical complexities
involved, item parameter estimation is performed by computer software (programs) designed
for that purpose. Until the early 1980s these estimation programs were available only for use

on relatively “large” mainframe computer systems and were very costly to operate. This



posed a problem for many test practitioners who did not have the necessary computer access,
programming support, and funding.

More recently, item parameter estimation programs have been developed for use on
microcomputers. Microcomputer-based estimation promises to significantly reduce the cost,
and hopefully the complexity, of parameter estimation and to place this capability onto the
desktops of practitioners who otherwise would not be able to explore what IRT has to offer
them.

To date little empirical research has been done to evaluate the accuracy and
performance of these microcomputer-based item parameter estimation procedures (see for
example: Yoes, 1990 and 1993; Vale and Gialluca, 1985 and 1988; Skaggs and Stevenson,
1986). The purpose of this paper is to update the Yoes (1990) study by presenting results on a
new marginal maximum-likelihood estimation program (XCALIBRE) along with the results
from the other estimation programs to summarize the effectiveness of the estimation

procedures currently available for use with the 3-parameter IRT model.

METHOD

The present investigation was based on the methodology employed by Yoes (1990) in
his comprehensive evaluation of two commercially available microcomputer-based item
parameter estimation programs ASCAL (Assessment Systems Corporation, 1987) and BILOG
(Scientific Software, 1986). The present paper extends the results of that study by
incorporating evaluation of a new estimation program, XCALIBRE (Assessment Systems
Corporation, 1995) under a subset of the conditions used in the original study. The following
modifications of the design of the Yoes (1990) investigation were made for purposes of the
present investigation: (1) the uniform distribution of © condition was not used, (2) only test
conditions 1 and 2 were evaluated, (3) the recovery of the averaged test information function
was not evaluated, and (4) the recovery of the 6 was not evaluated. Note that evaluation of

jtem parameter estimation procedures are only possible using Monte Carlo simulation



techniques in which it is possible to specify and control the known parameters of both items
and examinees, since those parameters are used to generate the data.
Generation of Item Response Data

All data sets were generated in accordance with the 3-parameter logistic IRT model in

which the IRF is defined by the function:

1-c¢

1+ e-Da(e -b) (Equation 1)

P(u = lje,a,b,c) =c+

In this model the a parameter indexes an item's capacity to discriminate among
differing levels of 8; the higher the a parameter, the more discriminating the ittem. The a
parameter is commonly referred to as the item discrimination and is proportional to the slope
of the IRF at its point of inflection.

The b parameter, referred to as the item difficulty, describes the item's location on the
0 scale. Item difficulty is defined as the point on the 6 scale at which the probability of a
correct response is exactly half way between the upper and lower asymptotes of the IRF.

The ¢ parameter is the probability that an examinee with a very low 6 level would
answer the item correctly through guessing or by some other means unrelated to the 6 being
measured. The ¢ parameter can be referred to as the lower asymptote parameter. The scaling
factor D, which is approximately equal to 1.7, maximizes the relation of the logistic ogive and
the normal ogive models.

Item response data were generated for each simulated examinee by computing the
probability of a correct response to the item in question given the examinee's "true” 6
parameter and the "true" item parameters (using Equation 1). The probability of a correct
response was then compared to a random number generated from a [0,1] uniform distribution
using a random number generation procedure developed by Wickman and Hill (1982). If the

probability of a correct response was less than the random number the item was coded as a

correct response (1), otherwise the item was coded as incorrect 0).



Independent Variables

Yoes (1990) identified four major dimensions, or factors, which appear to be important
in the evaluation of item parameter estimation procedures. Those factors are: (1) sample size,
(2) test length, (3) distribution of 6, and (4) test characteristics. All of these factors, in one
way or another, exercise an effect on the size, or content, of the observed (simulated) data
matrix that is the basis from which all item parameter estimation procedures work.

Sample Size. Sample sizes used in the present study were N= 250, 500, 1000, and
2000. These were selected to span a range encompassing what might be considered to be a
sample size too small for the 3-parameter model (N=250 condition) to that which might be
used for development of an item bank (N=2000).

Test Length. Test Lengths were similarly chosen to reflect a broad range of test
lengths representative of educational tests (i.e., n = 15, 25, 50, 75, and 100 items).
Conventional wisdom or "rules of thumb" would classify a 15-item test as being too short for a
3-parameter item calibration.

Distribution of 6. In contrast to the previous (1990) study by Yoes where both normal
and uniform distributions of 8 were used only the Normal (0,1) distribution of 8 was used in
the present investigation. The decision to exclude the uniform distribution of 6 condition was
made based on issues of: (1) available time for conduct of the research, and (2) the previous
finding that the distribution of 6 had relatively little influence on the recovery of the item
parameters. The decision to not include the uniform distribution of 6 condition also avoided
the necessity of addressing scaling issues as presented in the original paper (see Yoes, 1990
for a discussion).

Test Characteristics. Lord (1975) cautioned that simulation studies must include
conditions that are representative of real data and testing situations. Test characteristics for
the original study were selected to mirror item data that the author was working with at that
time. Item discrimination (a) conditions were as follows: (1) Test 1 had moderate levels of
item discrimination -- selected to mirror achievement data from an Introductory Psychology

course in a large midwestern university (average a = 0.75, std. dev. = 0.1), and (2) Test 2



had high levels of item discrimination -- selected to mirror characteristics on a well developed
instrument such as the General Science test from Armed Services Vocational Aptitude Battery
(average a = 1.50, std. dev. = 0.2). In contrast to the original study, all item difficulties
were distributed normally (0,1). Lower asymptote parameters were normally distributed with
a mean of 0.25 and a standard deviation (SD) of 0.05 to reflect a 4-option multiple-choice

exam. In combination, this produced two tests with characteristics as described in Table 1.

Table 1. Description of Test Characteristics
used in generating response data.

Item Parameter Distribution

Test

Number a b c
1 ND(0.75, .1) ND(0, 1) ND (.25, .05)
2 ND(1.50, .2) ND(0, 1) ND (.25, .05)

The four independent variables: (1) sample size, (2) test iength, (3) distribution of 0,
and (4) average level of item discrimination (i.e., test condition) were completely crossed,
resulting in 4 X 5 X 1 X 2 = 40 simulation data sets generated. Common data sets were used
across the parameter estimation methods and the resulting item parameter estimates were
compared to the known (generating) values to determine the effectiveness of each estimation
procedure.

Estimation Procedures

Three commercially available (microcomputer-based) item parameter estimation
programs, ASCAL (version 2.0; Assessment Systems Corporation, 1987) a maximum-
likelihood procedure with Bayesian priors, BILOG (version 1.1; Mislevy and Bock, 1986) a
marginal maximum-likelihood procedure, and XCALIBRE (version 1.0, Assessment Systems
Corporation, 1995) a marginal maximum-likelihood procedure, were used to estimate the item
parameters for each of the 40 data sets. As a relative performance comparison, the LOGIST 5

program (Wingersky, Barton, & Lord, 1982) a maximum-likelihood procedure operating on an



IBM mainframe computer was also used to estimate the item parameters for each of the data
sets.

All programs were operated under their respective default options with the following
exceptions: (1) BILOG was configured to characterize the distribution of 6 empirically (rather
than assuming a normal distribution of 6) and to allow the prior distributions on item
parameters to be updated with each cycle of the estimation process (i.e., "floating" priors), (2)
LOGIST estimates of 8 were constrained in the interval [-4.0 to +4.0], (3) ASCAL was
configured to allow a maximum of 25 "loops" in the estimation process, and (4) XCALIBRE
was configured to allow a maximum of 25 "loops" in the estimation process and to allow the
prior distributions on item parameters to "float" (as described for BILOG above).

Microcomputer estimation was carried out on IBM-compatible personal computers with
math coprocessors. LOGIST runs were conducted on an IBM 3090 model 200 with Vector
Facility. Computer time and support were generously provided by International Business
Machines Corporation (IBM) through a research support program. All mainframe analyses
were conducted at the IBM Los Angeles Scientific Center.

Evaluative Criteria

Individual Item Parameters. A number of criteria were used to evaluate the
performance of each of the item parameter estimation programs. The first criterion was the
recovery of each of the three individual IRT item parameters (a, b, and ¢) as indexed by (1)
product-moment correlations ( p; ) between the estimated and known parameter values, and
(2) the root mean squared error (RMSE, the square root of the average squared difference

between the true and estimated parameters). The RMSE index is defined as:

RMSE = (Equation 2)

where 7, represents one of the “true” item parameters for item i (a, b, or ¢), 7, represents
the estimate of the corresponding item parameter as produced by one of the four estimation

methods, and » is the number of items in the data set (test length).



Item Response Function. Because errors in the individual item parameters can
compensate for one another in fitting the observed data it was necessary to examine the
recovery of the IRF as a whole. Recovery of the IRF was evaluated using a RMSE, the square
root of the average squared distances between the true and estimated IRF at 201 points along
the 6 continuum (between 6 = -2.50 and 6 = +2.50 in increments of 0.025). For evaluating
recovery of the IRF all items were used: items with item difficulties greater than 4.5 (in
absolute value) were fixed at either -4.5 or +4.5, as appropriate. For evaluation of the IRF

the RMSE index was defined as:

RMSE = % Jﬁg R@,)-20,)] (Equation 3)

Removal of Extreme Item Parameters

Any item difficulty estimates greater than 4.50 (in absolute value) were removed from
the individual item parameter recovery analyses since there may be undue impact on the
evaluation (particularily the RMSE criterion) due to a singie item. This solution was devised to
accommodate the fact that many of the LOGIST estimation runs resulted in 1 or 2 items that
had "unreasonable" (i.e., very large) values. Table 2 shows the number of items removed for
the item parameter recovery analyses; as can be seen in the table this problem pertained almost
exclusively to the LOGIST program. The LOGIST program resulted in “extreme” difficulty
estimates in 24 of the 40 estimation runs (60%). BILOG only resulted in a single "extreme"

item difficulty in 40 estimation runs and the ASCAL and XCALIBRE programs always

produced item difficulty estimates within "reasonable" limits.



Numbers of Items Deleted

Table 2.
from Item Parameter Recovery Analyses

Estimation
Procedure
and Test
Length

Test 2

Test 1

N4

N3

N2

N1

N4

N3

N2

N1

LOGIST

nl

n2

n3
n4

ns

nl

n2
n3

n4

ns

BILOG

nl

nz
n3

n4

nS

XCALIBRE

nl

n2

n3

n4
nS

Test Lengths

Sample Sizes

NOTES:

15 items
25 items
50 items
75 items
100 items

nl

250
500

N1
N2

n2

n3

1,000
2,000

N3

n4

N4

n5



Analysis of Variance

To assist in the evaluation of the estimation procedures it was desirable to consider the
application of an analysis of variance (ANOVA) procedure. While ANOVA procedures have
not typically been used in studies of this kind, it is more than likely attributable to the fact that
the design of those studies did not permit the use of ANOVA. In the present design, the
RMSE evaluation criterion for the IRF appeared to be a logical choice for the dependent
measure for the ANOVA.

Examination of the distributions of the RMSE values, however, showed a significant
skew indicating that the RMSE would require a logarithmic transformation prior to conducting
the ANOVA procedure. The RMSE values were, therefore, transformed to log mean square
error (LMSE) values using a base 10 logarithmic transformation of the squared RMSE values:

LMSE = log,,( RMSE?) (Equation 4)

For the recovery of the item response function, therefore, a full factorial ANOVA
procedure was conducted with LMSE as the dependent variable and sample size, test length,
estimation method, and test condition as the independent variables. The ANOVA was
conducted using the ANOVA procedure from the SPSS-PC + statistical program (version 5.0).
Because there were no within-cell replications in the design, all 3-way and higher-order
interaction effects were pooled to form a residual error term. For each main effect and 2-way
interaction, an F test was conducted using the residual error term. The overall proportion of
variance attributable to each effect (or interaction) was computed as n°. Although RMSE
values were transformed to LMSE for purposes of the ANOVA, mean values as reported (or

graphed) are expressed on the original RMSE metric for purposes of interpretation.

RESULTS
Due to the scope of the study, general trends in the results will be noted along with any
important findings. The interested reader will no doubt be able to glean many other findings

from these data.



10

Recovery of Individual Item Parameters

Item Discrimination. Table 3 presents the product-moment correlations between
estimated and known item discrimination values. As can be seen in the table, the correlations
ranged considerably in value. In general, rank-order recovery of the true item discrimination
values is not outstanding. Comparisons of the estimation procedures (not reported here due to
length) show that item discrimination parameter estimates produced by each of the procedures
were more highly correlated with each other than with the known values. Correlations
between estimated and known item discrimination values tended to increase with increasing
sample size and/or test length. On average, XCALIBRE had the highest correlations followed
by BILOG, ASCAL and LOGIST.

Table 4 presents the RMSE information for recovery of the item discrimination
parameter. The magnitudes of these values support the observation in Table 3 that the item
discrimination parameter was not well estimated by any of the procedures, although the
similarity among procedures is comforting. Note that the results of average (signed) bias
computations (not reported here due to length) indicated that there was a tendency for all
estimation procedures except for the XCALIBRE program to overestimate the item
discrimination parameter.

Previous studies have shown a tendency for estimation procedures to occassionally
allow the item discrimination parameter estimates to become unusually large. Table 5 presents
the number of final item discrimination parameter estimates at or exceeding a value of 2.50
(the default maximum a value for LOGIST). The XCALIBRE and ASCAL programs
appeared to perform better in constraining the values of the item discrimination parameters
than the BILOG or LOGIST procedures.

Item Difficulty. The item difficulty parameters were well estimated by all four
estimation procedures. The correlations in Table 6 show that rank-order recovery of the item

difficulty parameters was very high.
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Table 3. Recovery of the Item Discrimination Parameter (a)
as Indexed by Product-Moment Correlatiomns (r).
Type of Test and Sample Size
Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .26 .02 .39 .67 .62 .72 .51 .91
n2 -.14 .61 .51 .45 .16 .40 .68 .67
n3 .30 .29 .50 .59 .37 .31 .62 .67
n4 .36 .33 .64 .69 .37 .47 .70 .69
nsS .25 .25 .44 .57 .40 .38 .45 .65
ASCAL
nl .47 .33 -.03 .51 .53 .45 .25 .73
n2 -.07 .57 .31 .44 .23 .12 .58 .43
n3 .28 .27 .44 .55 .36 .35 .55 .73
n4 .50 .45 .57 .69 .41 .48 .68 .71
ns .34 .22 .46 .56 .53 .54 .63 .73
BILOG
nl .57 .55 .38 .66 .45 .43 .46 .69
n2 -.10 .66 .61 .54 .17 .04 .36 .62
n3 .42 .47 .57 .53 .22 .36 .50 .59
n4 .49 .44 .69 .58 .40 .51 .61 .58
ns .40 .41 .52 .50 .49 .50 .59 .74
XCALIBRE
nl .59 .59 .42 .78 .51 .50 .49 .92
n2 -.14 .65 .60 .70 .38 .42 .59 .72
n3 .43 .47 .62 .70 .40 .55 .67 .78
n4 .54 .56 .73 .72 .44 .56 .73 .76
nS .43 .45 .58 .69 .51 .53 .63 .75
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 = 25 items
N3 = 1,000 n3 50 items
N4 = 2,000 n4 = 75 items
n5 = 100 items



Table 4.

Recovery of the Item Discrimination Parameter (a)
as Indexed by the Root Mean Square Error Criterion (RMSE).

12

Type of Test and Sample Size
Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .72 .77 .34 .32 .66 .50 .57 .52
n2 .64 .37 .22 .31 .68 .45 .47 .29
n3 .45 .24 .21 .17 .55 .48 .26 .26
n4 .61 .37 .18 .13 .49 .38 .29 .21
ns .48 .22 .22 .13 .57 .41 .32 .23
ASCAL
nl .69 .64 .75 1.08 .43 .49 .62 .66
n2 .54 .40 .34 .36 .43 .37 .40 .38
n3 .41 .24 .25 .19 .31 .31 .23 .19
n4 .38 .29 .19 .15 .27 .23 .21 .18
ns .35 .25 .22 .15 .25 .23 .19 .17
BILOG
nl .19 .15 .14 .15 .61 .39 .35 .31
n2 .30 .12 .10 .13 .51 .38 .38 .21
n3 .20 .13 .13 .17 .46 .30 .25 .22
n4 .25 .23 .11 .15 .39 .26 .27 .23
nS .20 .13 .15 .17 .48 .29 .22 .18
XCALIBRE
nl .09 .09 .11 .11 .20 .20 .21 .09
n2 .12 .08 .12 .09 .19 .22 .18 .18
n3 .10 .09 .09 .07 .20 .19 .17 .14
n4 .09 .08 .07 .07 .20 .17 .15 .13
ns5 .09 .09 .08 .07 .19 .16 .15 .14
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 = 25 items
N3 = 1,000 n3 = 50 items
N4 = 2,000 n4d = 75 items
n5 = 100 items
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Table 5. Number of Item Discrimination Parameter Estimates
at or exceeding 2.50 in Value
Type of Test and Sample Size
Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl 2 1 0 0 7 3 4 4
n2 0 0 0 0 8 2 4 0
n3 0 0 0 0 6 6 1 2
n4 5 1 0 0 10 4 3 1
ns 2 0 0 0 21 6 2 2
ASCAL
nl 0 0 0 2 0 0 0 2
n2 0 0 0 0 1 0 0 0
n3 0 0 0 0 0 0 0 0
n4 0 0 0 0 0 0 0 0
ns 0 0 0 0 0 0 0 0
BILOG
nl 0 0 0 0 3 0 1 0
n2 0 0 0 0 1 1 1 6}
n3 0 0 0 0 3 0 1 o}
n4 0 0 0 0 5 1 1 0
ns 0 0 0 0 6 0 0 0
XCALIBRE
nl 0 0 0 0 0 0 0 0
n2 0 0 0 0 0 0 0 0
n3 0 0 0 0 0 0 0 0
n4 0 0 0 0 0 0 0 0
ns 0 0 0 0 0 0 0 0
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 25 items
N3 = 1,000 n3 50 items
N4 = 2,000 n4d = 75 items
n5 = 100 items
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The error in estimation of item difficulties decreased with increases in either sample
size or test length. BILOG and XCALIBRE tended to recover the item difficulty parameter
better than did ASCAL or LOGIST in small sample conditions and/or short test lengths.
There was a slight tendency for the high discrimination condition (Test 2) to recover the true
item difficulty value with less error. In general, however, the results indicate that the
programs are more similar than different for tests of 75 or 100 items and sample sizes of 1,000
or 2,000. Overall, XCALIBRE had the lowest RMSE, followed by BILOG, ASCAL, and
LOGIST.

Lower Asymptote. Tables 8 and 9 report the correlational and RMSE evaluation
(respectively) of recovery for the lower asymptote parameter (c). As is typically the case, the
results suggest that the lower asymptote parameter may not be well estimated but there is also
no clear distinction between the procedures in its estimation (although XCALIBRE and BILOG
tended to result in lower RMSE values). As was the case for the item discrimination
parameters, comparing estimates produced by each program showed a high degree of
similarity (results not reported due to length; most correlations between estimates of any two
of the procedures were > 0.70) between the programs in estimating the lower asymptote of
the IRF. Rank-order recovery also was slightly affected by the average level of item
discrimination -- the high a condition of Test 2 had a tendency toward better recovery of ¢ as
indicated by RMSE.

Recovery of the Item Response Function

In studies of this type it is perhaps most informative to look at relative performance of
the estimation programs to focus attention on the recovery of the IRF as a whole (see Hulin,
Lissak, and Drasgow, 1982). Table 10 shows the RMSE values for recovery of the entire

IRF.



Table 6.

as Indexed by Product-Moment Correlations (r).

Recovery of the Item Difficulty Parameter (b)

15

Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .97 .95 .98 .99 .97 .96 .99 .99
n2 .94 .96 .99 .99 .97 .99 .99 1.00
n3 .95 .95 .98 .99 .96 .99 1.00 .99
n4 .94 .96 .99 .99 .97 .99 .99 1.00
ns .94 .97 .98 .99 .98 .98 .99 1.00
ASCAL
nl .98 .95 .97 .97 .98 .98 .98 .98
n2 .97 .97 .99 .99 .97 .99 .99 1.00
n3 .98 .97 .99 .99 .99 .99 .99 1.00
n4 .97 .98 .99 .99 .99 .99 1.00 1.00
ns .97 .98 .98 .99 .99 .99 1.00 1.00
BILOG
nl .99 .98 .99 .99 .99 1.00 .99 .99
n2 .98 .98 .99 .99 .99 .99 1.00 1.00
n3 .98 .97 .99 .99 .99 .99 1.00 .99
n4 .97 .97 .99 .99 .98 .99 .99 .99
ns .98 .98 .98 .98 .99 .99 1.00 1.00
XCALIBRE
nl .98 .98 .99 .95 .99 1.00 1.00 1.00
n2 .98 .98 .99 .99 .99 1.00 1.00 1.00
n3 .97 .98 .99 .99 .99 1.00 1.00 1.00
n4 .98 .98 .99 .99 .99 .99 1.00 1.00
ns .98 .98 .99 .99 .99 .99 1.00 1.00
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 = 25 items
N3 = 1,000 n3 = 50 items
N4 = 2,000 n4d = 75 items
n5 = 100 items



Table 7.
as Indexed by the Root Mean Square Error Criterion (RMSE).

Recovery of the Item Difficulty Parameter (b)

16

Type of Test and Sample Size

Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .23 .29 .16 .16 .32 .72 .31 .38
n2 .35 .28 .20 .14 .31 .13 .18 .20
n3 .35 .34 .22 .15 .30 .18 .10 .12
n4 .35 .29 .19 .15 .26 .17 .12 .09
ns .35 .29 .22 .16 .22 .21 .15 .12
ASCAL
nl .28 .33 .27 .40 .27 .20 .24 .23
n2 .24 .28 .15 .15 .26 .11 .11 .10
n3 .26 .27 .18 .14 .20 .14 .13 .10
n4 .26 .23 .17 .16 .17 .13 .10 .09
ns .23 .24 .18 .15 .16 .12 .09 .09
BILOG
nl .18 .26 .19 .14 .19 .11 .15 .15
n2 .23 .29 .17 .15 .17 .11 .09 .08
n3 .25 .25 .16 .17 .21 .15 .11 .12
n4 .25 .25 .14 .17 .20 .14 .14 .12
ns .23 .24 .18 .19 .17 .12 .09 .10
XCALIBRE
nl .22 .28 .19 .22 .23 .03 .11 .18
n2 .20 .37 .17 .14 .17 .12 .06 .10
n3 .25 .23 .13 .12 .16 .13 .10 .08
n4 .22 .21 .15 .16 .17 .11 .09 .06
ns .21 .23 .14 .14 .15 .11 .08 .09
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 25 items
N3 = 1,000 n3 50 items
N4 = 2,000 n4 75 items
n5 = 100 items



Table 8.
as Indexed by Product-Moment Correlations (r).

Recovery of the Lower Asymptote Parameter (c)

17

Type of Test and Sample Size
Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .23 .20 -.20 .09 .39 .60 .40 .54
n2 .13 .06 .61 .12 .18 .30 .68 29
n3 .26 .14 .07 .18 .28 .17 .45 .24
n4 .08 .14 .39 .29 .13 .19 .36 .53
ns .06 .23 .06 .04 .18 .30 34 .47
ASCAL
nl .43 .35 .06 .17 .36 .64 .34 .54
n2 .28 .14 .49 .37 .17 .34 .58 .37
n3 .27 .02 .34 .20 .43 .29 .41 .30
n4 .09 .21 .28 .32 .30 .31 .41 .54
ns .21 .27 .20 .17 .28 .35 .47 .50
BILOG
nl .55 .33 -.08 .25 .13 .52 .21 .71
n2 .27 .18 .41 .38 .16 .33 .75 .57
n3 .24 .01 .30 .13 .43 .23 .37 .27
n4 .10 .15 .31 .14 .36 .27 .46 .34
n5 .23 .32 .20 .20 .27 .36 .48 .51
XCALIBRE
nl .51 .38 .28 .35 .34 .60 .34 .67
n2 .32 .15 .27 .30 .16 .38 .80 .57
n3 .22 .09 .36 .30 .47 .27 .47 .37
n4 .10 .15 .25 .27 .32 .33 .45 .54
ns .22 .36 .31 .29 .33 .43 .54 .59
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 = 25 items
N3 = 1,000 n3 = 50 items
N4 = 2,000 n4 = 75 items
n5 = 100 items



Table 9.
as Indexed by the Root Mean Square Error Criterion (RMSE).

Recovery of the Lower Asymptote Parameter (c)

18

Type of Test and Sample Size
Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .09 .11 .08 .06 .13 .09 .07 .07
n2 .09 .09 .06 .05 .10 .08 .07 .06
n3 .10 .09 .07 .05 09 .09 .05 .06
n4 .11 .09 .05 .05 .11 .08 .05 .04
ns .11 .08 .07 .05 .09 .07 .05 .04
ASCAL
nl .07 .07 .10 .14 .07 .08 .07 .08
n2 .05 .06 .05 .06 .06 .05 .06 .06
n3 .06 .05 .06 .05 .04 .05 .05 .05
n4 .06 .05 .05 .05 .05 .05 .04 .04
n5 .05 .05 .05 .05 05 .05 .04 .04
BILOG
nl .03 .04 .04 .05 .04 .05 .05 .03
n2 .04 .05 .03 .03 .05 .04 .03 .03
n3 .04 .04 .04 .05 .03 .05 .04 .04
n4 .06 .05 .04 .05 .04 .04 .04 .04
ns .04 .04 .05 .05 .04 .04 .04 .03
XCALIBRE
nl .03 .05 .03 .04 .05 .04 .04 .03
n2 .03 .07 .04 .04 .05 .03 .02 .03
n3 .03 .04 .04 .04 .03 .04 .04 .04
n4 .05 .04 .04 .05 .04 .04 .03 .03
ns .04 .04 .03 .04 .03 .03 .03 .03
NOTES: Sample Sizes Test Lengths
N1l = 250 nl = 15 items
N2 = 500 n2 = 25 items
N3 = 1,000 n3 = 50 items
N4 = 2,000 nd4d = 75 items
n5 = 100 items



19

Overall, XCALIBRE resulted in the best recovery of the IRF as indexed by the RMSE
criterion. For moderate discrimination condition (Tests 1), XCALIBRE parameter estimates
resulted in a lower RMSE than those for BILOG in 12 out of 20 data sets for Test 1 and 16
out of 20 data sets for Test 2. The results from ASCAL were comparable to those obtained
from LOGIST. For the high discrimination condition (Test 2) XCALIBRE and BILOG
RMSE's were lower for short tests (n=15 and n=25 items) but as test length increased (n=

50, 75 and 100 items) results were comparable between all four programs.

Analysis of Variance
Results of the factorial analysis of variance (ANOVA) on the log mean square error

LMSE) for the IRF are

(LN the resented in Table 11. What is of most interest in this ANOVA

summary table are the n° values which indicate the size of the effect (proportion of total sum
of squares accounted for). The independent variables and their 2-way interactions accounted
for a proportion of 0.88 of the total variability in the LMSE values. As can be seen in Table
11 the largest effect was attributable to sample size (n? =.29). The mean values for the
RMSE across sample sizes were: 250 examinees = .10, 500 examinees = .08, 1000
examinees = .06, 2000 examinees = .06. All four estimation procedures produced more
accurate parameter estimates as sample size increased. Estimation method (program)
accounted for the second largest proportion of the overall variability (n? =.20) with
XCALIBRE and BILOG yielding noticeably lower RMSE values. The mean RMSE values for
the estimation methods (across conditions) were: LOGIST = .10, ASCAL = .08, BILOG =
.07, and XCALIBRE = .06. Test length also accounted for a sizable proportion of the overall
variability (n* =.15) with decreasing RMSE values as test length increases. The mean RMSE
values for test length conditions were: 15 items = .11, 25 items = .08, 50 items = .07, 75
items = .07, 100 items = .06. The sample size and test length effects provide empirical
support of the statistical consistency of the estimation procedures. The effect of estimation
procedure (program) appears to demonstrate the overall superiority of the marginal maximum-

likelihood approach to estimating item parameters iin IRT. Both the BILOG and XCALIBRE



procedures recovered the overall IRF better than the other two procedures (ASCAL and

LOGIST).
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as Indexed by the Root Mean Squared Error Criterion (RMSE).
Type of Test and Sample Size
Estimation
Procedure Test 1 Test 2
and Test
Length N1 N2 N3 N4 N1 N2 N3 N4
LOGIST
nl .15 .13 .10 .14 .18 .27 .18 .17
n2 .14 .10 .07 .06 .16 .09 .07 .09
n3 .12 .09 .06 .05 .10 .12 .06 .05
n4 .13 .09 .06 .05 .22 .08 .06 .04
ns .12 .08 .07 .04 .12 .08 .06 .04
ASCAL
nl .15 .14 .14 .14 .12 .11 .12 .10
n2 .14 .10 .07 .08 .12 .07 .07 .07
n3 .11 .08 .06 .05 .09 .09 .06 .04
n4 .11 .08 .06 .05 .09 .07 .05 .04
ns .10 .07 .06 .04 .09 .07 .05 .04
BILOG
nl .08 .07 .06 .06 .10 .07 .08 .05
n2 .10 .07 .04 .05 .10 .06 .05 .05
n3 .09 .07 .05 .05 .09 .08 .05 .05
n4 .10 .07 .05 .05 .10 .07 .06 .06
nSs .08 .06 .06 .05 .09 .07 .05 .05
XCALIBRE
nl .07 .07 .06 .07 .09 .07 .05 .06
n2 .08 .08 .06 .05 .08 .06 .04 .04
n3 .08 .06 .04 .03 .07 .07 .05 .04
n4 .08 .06 .05 .04 .08 .06 .04 .03
ns .07 .06 .04 .03 .08 .06 .04 .04
NOTES: Sample Sizes Test Lengths
N1 = 250 nl = 15 items
N2 = 500 n2 = 25 items
N3 = 1,000 n3 = 50 items
N4 = 2,000 n4d = 75 items
n5 = 100 items



Table 11. Factorial Analysis of Variance (ANOVA)
of the Log Mean Square Error (LMSE) criterion
for the Item Response Function (IRF)
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Sum of Mean
Source of Variation Squares df Square F Signif n2
Main Effects
Sample Size 5.959 3 1.986 83.945  .000 0.29
Test Length 3.134 4 .783 33.112 .000 0.15
Estimation Method 4.170 3 1.390 58.746  .000 0.20
Test Condition .064 1 .064 2.684  .104 0.00
2-way Interactions
Sample Size X Test Length 1.292 12 .108 4.552  .000 0.06
Sample Size X Estimation Method 221 9 .025 1.039  .4%4 0.01
Sample Size X Test Condition .016 3 .005 232  .874 0.00
Test Length X Estimation Method 1.755 12 146 6.180 .000 0.09
Test Length X Test Condition 124 4 .031 1.313 .270 0.01
Estimation Method X Test Condition .143 3 .048 2.012 117 0.01
Explained 17.926 54 .332 14.030 .000 0.88
Residual 2.484 105 .024
Total 20.41 159 .128
Notes: All three-way and higher interaction effects were pooled to form the residual term.

Of the 720 total cases, 21 cases contained missing data.

2

There were two sizable (i.e., n° > .05) 2-way interaction effects in the ANOVA. The largest

interaction effect (n* =.09) was between test length and estimation method. This interaction

is graphed in Figure 1 and again demonstrates the superiority of the estimation procedures

based on marginal maximum-likelihood (BILOG and XCALIBRE). BILOG and XCALIBRE

yielded RMSE values that were relatively constant across test length, thus giving empirical

verification to the theoretical advantages of marginal maximum-likelihood with short tests;

XCALIBRE showed a tendency toward reduced RMSE values as test length increased. Both

LOGIST and ASCAL demonstrated a trend of decreasing RMSE values as test length

increased but very relatively high levels of RMSE (in contrast to BILOG and XCALIBRE) for

tests of 15 and 25 items.



Figure 1. ANOVA of LMSE for the IRF
2-Way Interaction between Test Length and Estimation Method (n2 = .09)
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The only remaining sizable interaction effect was between sample size and test length. The

RMSE mean values for this interaction are presented in Figure 2.

Figure 2. ANOVA of LMSE for the IRF
2-Way Interaction between Sample Size and Test Length (nz = .06)
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Figure 2 shows that with very small samples (N = 250) the lengthening of the test did not
result in an overall reduction in the average RMSE across procedures. With a more moderate
sample size (N=500) the effect of test length began to be demonstrated, but without as much
reduction as was found in the N=1000 and N=2000 conditions. Note, however, that this effect is

across all estimation procedures.

DISCUSSION

Although measures of recovery of the individual item parameters can help to shed light
on the areas in which a particular estimation procedure/program may be faltering (e.g.,
overestimation of the item discrimination parameter by all of the programs except
XCALIBRE), the recovery of the IRF as a whole appears to provide the best indicator of
program performance. Across data sets, the marginal maximum-likelihood procedures
(XCALIBRE and BILOG) resulted in improved recovery of the IRF, particularly in conditions
where theoretically expected -- i.e., short test lengths and small sample sizes. As sample size
increased to 500 or more, however, and test length increased to 50 items or more, the
differences between the programs become less pronounced. However, Figure 1 shows that
XCALIBRE produced the lowest mean RMSE at all test lengths above 15 items, and equaled
that of BILOG at 15 items.

Overall the marginal maximum-likelihood estimation procedures (BILOG and
XCALIBRE) would appear to be the best overall choice for an IRT parameter estimation
program. This is particularly true when working with data sets resulting from short tests
and/or small samples. Results from the present study demonstrate that the new XCALIBRE
procedure is a viable alternative to BILOG.

Since the Yoes (1990) investigation was undertaken, new versions of both ASCAL and
BILOG have been released. Updated versions of both ASCAL (version 3.2) and BILOG
(version 3.04) were used on a subset of these same data sets. Based on this sampling, it did
not appear that the results of this study would be affected by re-running the analyses on the

updated programs.
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