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Abstract 
 

Item response theory (IRT) presents a powerful psychometric paradigm for developing, 

delivering, analyzing, and scoring assessments.  To utilize IRT, assessment data must be 

calibrated with sophisticated software designed for that purpose.  Use of IRT assumes that the 

software accurately estimates parameters for various IRT models; the fact that a program can 

produce IRT parameters does not mean they are accurate.  Moreover, IRT assumes that the test 

data is of adequate volume, in both number of items and number of examinees.  The purpose of 

this paper was to evaluate these assumptions with the software Xcalibre 4.1, utilizing a 5 (model) 

× 3 (test length) × 4 (sample size) monte-carlo parameter recovery study.  Results indicate that 

Xcalibre’s sophisticated IRT estimation algorithm accurately recovered IRT parameters, in 

addition to its superiority over other IRT software in terms of quality output and user 

friendliness. 
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Item response theory (IRT) presents a powerful psychometric paradigm for developing, 

delivering, analyzing, and scoring assessments.  To utilize IRT, a statistical analysis of test data, 

typically called a calibration, is performed with sophisticated software.  An obvious assumption 

of IRT is that the test data is of adequate volume and quality to fit IRT models.  An additional, 

more implicit assumption is that the software is sophisticated enough to accurately fit models 

when the data is adequate.  The purpose of this paper was to evaluate these two assumptions. 

Studies that evaluate questions such as these are called parameter recovery studies.  The 

rationale is that we can generate data sets with known IRT parameters (IRT is a strong enough 

theory that it can do so quite easily, using monte-carlo simulation methods), calibrate the data 

under different conditions (e.g., sample size, IRT model, software program), and then compare 

the IRT parameters from the calibration to the known parameters that were originally generated.  

If calibrated parameters are quite similar to the original parameters, that is, if they recover the 

original parameters, the calibration can be interpreted as accurate.  It is obvious that a report with 

such a comparison is necessary documentation for any IRT calibration software; otherwise, the 

quality of the software is unknown, and it could be providing very inaccurate analyses. 

There are two types of parameter recovery studies.  First, initial studies investigate a 

newly developed IRT model and provide support for the validity of its item parameter calibration 

algorithm (e.g., Muraki, 1992).  Later studies typically provide a comparison of different models, 

different sample sizes, or different software (Reise & Yu, 1990; French & Dodd, 1999; DeMars, 

2004; Wang & Chen, 2005; Jurich & Goodman, 2009).  The current study falls into the latter 

category, as the IRT models are established and well known, and the purpose was to evaluate 

sample size needs for calibration with new IRT calibration software, Xcalibre 4.1 (Guyer & 

Thompson, 2011). 

Yoes (1995) evaluated the parameter recovery of an earlier version of Xcalibre while also 

comparing it to existing programs at the time (BILOG, LOGIST, and ASCAL).  Xcalibre was 

found to be the most accurate program, especially with small sample sizes or test lengths.  The 

new version of Xcalibre (4.1 at this time) has received enhancements to the item parameter 

estimation algorithm, as well as years’ worth of improvements to a user-friendly interface and 

output.  Therefore, this study was designed to evaluate the new program under similar conditions 

but with expanded model comparisons in place of software comparisons.   

Most notably, this study compared the three major dichotomous models, the 3-parameter 

logistic, 2-parameter logistic, and the Rasch (1-parameter) models, as well as Samejima’s (1972) 

graded response model and Muraki’s (1992) generalized partial credit model.  The previous 

study evaluated only the 3-parameter model, focusing on a comparison of different software.  
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Like Yoes (1995), the effect of the number of items on the test (50, 100, or 200) on item 

parameter recovery was examined.  In addition, the effect of sample size (300, 500, 1,000, and 

2,000) on item parameter recovery was investigated.  French and Dodd (1999) noted that smaller 

sample sizes can be used for Rasch models, but this study focused primarily on non-Rasch 

models because they do not make the unrealistic assumption of equivalent item discrimination. 

Therefore, this parameter recovery study had a 5 (model) × 3 (test length) × 4 (sample 

size) design, providing a complex evaluation of important variables in IRT calibration.  Results 

indicate that Xcalibre’s sophisticated IRT estimation algorithm accurately recovers IRT 

parameters.  In addition to its superior accuracy, Xcalibre has been designed to have superior 

output quality and user-friendliness over other programs.  Its interface is purely point-and-click, 

with no writing of complex idiosyncratic command code required.  While output from other 

programs might be ASCII text or simple lists of numbers, Xcalibre automatically builds a 

comprehensive report document with dozens of embedded tables and graphics.  Xcalibre 

therefore represents the most sophisticated IRT program available to researchers and 

practitioners. 

Method 

The goal of this study was to examine item parameter recovery under a range of 

important conditions, outlined by the 5 (IRT model) × 3 (test length) × 4 (sample size) design.  

The test length, or number of test items, equaled 50, 100, or 200; longer tests typically provide 

more reliable measurement and therefore more accurate calibration.  The sample sizes used were 

300, 500, 1,000, and 2,000 examinees; again, higher numbers are expected to provide more 

accurate calibration. 

 

Five IRT models were evaluated.  The 3-parameter logistic model (3PL), the 2-parameter 

logistic (2PL), and the 1-parameter (1PL, Rasch) dichotomous models were examined.  In 

addition, Samejima’s graded response model (SGRM; 1972) and Muraki’s generalized partial 

credit model (GPCM; 1992) were also examined.  A model constant (D) of 1.7 was used for the 

non-Rasch conditions in this study. 

 

The dichotomous item parameters were generated according to the following 

distributions: a ~ N(0.80, 0.2), b ~ N(0.0, 1.0), c ~ N(0.25, .03).  To ensure comparability across 

the three different dichotomous models, the same b parameters were used for all three 

dichotomous models.  Additionally, the same a parameters were used for the 2PL and the 3PL 

models. 

 

The polytomous a parameter was generated separately and was normally distributed with 

a mean of 1.0 and a standard deviation of 0.2.  All of the polytomous items used the traditional 
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five-category scale.  The boundary location (bk) parameters for categories 1 to k were fixed to be 

2, 1, 1, and 2 for all items. 

 

Monte-Carlo Design 

A monte-carlo design was used in this study.  A total of 20 replications were performed 

for each of the 60 cells in the design.  Simulees were generated using a standard normal 

distribution for each replication in each cell.  The generated θ values were scaled to have a mean 

of 0.0 and a standard deviation of 1.0.   

 

The generated item parameters were used for purposes of the monte-carlo simulation.  A 

matrix of random numbers was drawn from a uniform distribution with a minimum of 0 and 

maximum of 1 (U[0, 1]).  This random number matrix had as many rows as persons and as many 

columns as items.  A probability matrix was generated based on θ and the IRT parameters 

according to the given IRT model.  

 

The procedure of generating item responses was different for dichotomous and 

polytomous items.  For each cell in the matrix, the random number was compared to the 

probability of a correct response to create a dichotomous item response. If the random number 

was greater than the probability, the response was a 0, while a probability greater than the 

random number resulted in a response of 1.   

 

For polytomous items, the cumulative probability of responding in at least category k was 

computed for all categories.  If the random number was less than the probability of responding in 

category 1, the response was coded as a 1.  If the random number was greater than the 

cumulative probability for category k but less than the probability for category k – 1, then the 

response was coded as k.  This process results in an appropriate polytomous response matrix. 

 

Parameter Recovery 

One goal of this study was to evaluate the recovery of the generated item parameters.  

The first index of item parameter recovery that was used was the average bias, which was 

defined as 
20
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where ξ is a given item parameter and ˆ
i  is its estimate. 

The root mean square error (RMSE) has the advantage of being in the same metric as the item 

parameters. It is defined by  
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The final index is the standard error. It was defined as 
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The SE equals the standard deviation of the estimated item parameters over the 20 replications 

performed in the study, and indexes instability in the item parameter estimates. 

 

Correlations between the generated item parameters and the estimated item parameters 

were computed for each replication.  The correlation was defined as 
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where n equals the number of items in the condition. 

 

Software Specifications 

The computer program Xcalibre Version 4.1 (Guyer & Thompson, 2011) was used for 

the item parameter calibration performed in this study.  It uses a marginal maximum likelihood 

procedure with an expectation maximization (E-M) algorithm.  Except for the Rasch model, all 

item parameter calibrations were performed using a D of 1.7.  The program used an item 

parameter convergence criterion of 0.01 with an upper limit of 80 E-M cycles. 

 

The following prior distributions were used (where relevant): a  ~ N(1.0, 0.3); b ~ N(0, 

1); c ~ N(0.25, 0.03). The prior item parameter distributions were allowed to float after the 

completion of each item parameter estimation step of the E-M algorithm.  This means that the 

mean of the prior was updated to equal the mean of the estimated item parameters after the given 

iteration.  

 

To ensure comparability of the item parameters across samples, Xcalibre provides the 

option to center the item parameter estimates on θ.  For the 2PL, 3PL, and the polytomous 

models Xcalibre scaled the θ estimates to have a standard deviation of 1.0.  This was done by 

multiplying the a parameters by the standard deviation of θ. For the 2PL and 3PL models, the θ 
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distribution is centered to have a mean of 0.0.  Version 4.1 of Xcalibre uses the user specified θ 

estimation method to perform the θ estimate centering.  Thus, for this simulation study maximum 

likelihood θ estimates were used for the item parameter centering.  Simulees that did not have a 

reasonable θ estimate were excluded from the θ distribution for purposes of item parameter 

centering.  For the Rasch model the b parameter estimates were centered to have a mean of 0.0 

and standard deviation of 1.0. 

Results 

There were as many bias, SE, and RMSE statistics as there were items for each cell in the 

study.  As the generating values for the a, b, and c parameters differed across items, the median 

item parameter recovery was computed and is reported in the tables.  The generating value did 

not vary for the polytomous boundary locations so the mean recovery was computed across 

items. 

 

Dichotomous Models 

The bias, standard error, and RMSE statistics are presented in Table 1 for the Rasch 

model.  It was evident that the median bias across all items was essentially zero for each of the 

conditions examined.  The median SE and RMSE decreased as sample size increased.  The 

recovery of the b parameter was not sensitive to the number of items in the test. 

 

The results for the 2-parameter model are presented in Table 2.  There was evidence that 

the a parameter estimates had a minimal amount of positive bias for shorter tests; it decreased as 

the number of items in the test was increased from 50 (bias of about 0.050) to 200 (bias of about 

0.015).  The median bias for the b parameter was essentially zero for all conditions in this study.  

The median SE decreased for the a and b parameters as the sample size increased.  The RMSEs 

decreased as both the sample size and the number of items increased. 

 

The a parameters were also positively biased for the 3-parameter model as shown by 

Table 3.  As with the 2-parameter model, the positive bias decreased as a function of the number 

of items in the test.  The median bias statistics for the b and c parameters were near zero.  The SE 

and RMSE statistics decreased as sample size increased for the a and b parameters.  The SEs of 

the c parameters slightly increased as sample size was increased. 
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Table 1.  Item Parameter Recovery for the Rasch Model b Parameter for Xcalibre 4.1, for N = 300, 500, 1,000, and 5,000 

 Bias SE RMSE 

No. Items 300 500 1000 2000 300 500 1000 2000 300 500 1000 2000 

50   .006 .001 −.001 .001 .142 .119 .092 .062 .155 .134 .106 .070 

100 .000 -.012 .002 −.001 .147 .118 .091 .060 .158 .128 .099 .079 

200 −.004 −.001 −.002 .001 .151 .118 .086 .060 .171 .136 .107 .085 

 

 

 

 

 

 

Table 2.  Item Parameter Recovery for the 2PL for Xcalibre 4.1, for N = 300, 500, 1,000, and 5,000 

No. Items & Bias SE RMSE 

Parameter 300 500 1000 2000 300 500 1000 2000 300 500 1000 2000 

50 Items 

 a .054 .057 .049 .053 .090 .079 .059 .040 .116 .101 .081 .067 

 b .000 −.001 .012 .006 .114 .093 .062 .044 .124 .099 .081 .062 

100 Items 

 a .031 .026 .032 .028 .088 .075 .058 .041 .102 .086 .068 .050 

 b .000 .002 .004 .004 .115 .093 .065 .047 .119 .098 .071 .053 

200 Items 

 a .018 .015 .014 .015 .086 .073 .053 .040 .097 .081 .060 .045 

 b .002 −.003 −.001 .001 .108 .086 .062 .044 .109 .089 .064 .046 
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Table 3.  Item Parameter Recovery for the 3PL for Xcalibre 4.1, for N = 300, 500, 1,000, and 5,000 

No. Items & Bias SE RMSE 

Parameter 300 500 1000 2000 300 500 1000 2000 300 500 1000 2000 

50 Items 

 a .089 .093 .076 .089 .110 .102 .080 .066 .150 .141 .117 .109 

 b .004 .013 .013 −.007 .139 .114 .089 .067 .167 .138 .120 .109 

 c .007 .005 .004 .002 .006 .007 .008 .008 .021 .020 .019 .020 

100 Items 

 a .061 .057 .050 .050 .108 .089 .077 .060 .138 .121 .103 .082 

 b .021 .019 .009 .010 .147 .123 .083 .065 .163 .140 .112 .086 

 c .004 .004 .001 .002 .006 .007 .009 .010 .023 .023 .022 .021 

200 Items 

 a .030 .032 .028 .030 .106 .094 .076 .058 .128 .113 .089 .069 

 b −.007 −.009 −.003 −.002 .145 .116 .081 .063 .166 .138 .104 .085 

 c −.004 −.003 −.003 −.002 .006 .007 .008 .010 .023 .022 .021 .021 
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Polytomous Models 

Bias 

The bias statistics for the polytomous models are provided in Table 4.  The a parameter 

estimates remained essentially unbiased for the SGRM and GPCM for all sample sizes and 

number of items used.  The bias of the boundary location parameters remained quite close to 

zero for the SGRM.  The bias increased for the boundary parameters for the SGRM 200-item 

condition with a sample size of 300. 

 

The bias of the boundary location parameters for the GPCM also remained near zero 

across sample sizes when there were 50 items in the test.  For the 100-item test there was some 

slight bias present when the sample sizes were 300 and 500.  This bias disappeared when the 

sample size was increased to 1,000.  The bias of the boundary location parameters increased 

when the number of items was 200.  As before, the magnitude of the bias decreased as the 

sample size was increased. 

 

Table 4.  Item Parameter Bias for the Polytomous Items  

for Xcalibre 4.1, for N = 300, 500, 1,000, and 5,000 

No. Items & SGRM GPCM 

Parameter 300 500 1000 2000 300 500 1000 2000 

50 Items 

 a −.006 .001 .000 −.002 .005 .023 .009 .002 

 b1 −.007 −.010 .015 .019 −.016 .030 .011 .006 

 b2 .005 −.008 .012 .018 .009 .032 .013 .019 

 b3 .003 −.023 −.004 .000 .004 −.019 −.013 .002 

 b4 .015 −.023 −.007 −.002 .011 −.017 −.015 .000 

100 Items 

 a .008 −.008 −.008 −.002 −.001 −.003 −.007 −.011 

 b1 .007 −.028 −.013 −.001 .020 .020 −.011 −.014 

 b2 .010 −.013 −.001 .002 .029 .026 .001 −.003 

 b3 −.003 −.003 −.005 −.007 .040 .032 −.004 .001 

 b4 −.002 .012 −.013 −.007 .040 .040 .006 .010 

200 Items 

 a −.012 −.005 .009 −.008 .006 −.016 −.013 −.011 

 b1 −.029 −.025 .006 −.021 .073 −.025 −.009 −.011 

 b2 −.002 −.012 .001 −.012 .081 .002 .008 −.001 

 b3 −.035 .003 −.015 −.003 .057 .019 .015 .006 

 b4 .059 .015 −.019 .006 .065 .036 .025 .011 
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SE 

The median SEs for the a parameter decreased as sample size increased for the SGRM 

and GPCM, as shown by Table 5.  The a parameter SEs were not sensitive to the number of 

items in the test.  The SEs for boundaries 1 and 4 were larger than the SEs for boundaries 2 and 

3.  The SEs of the boundary parameters also decreased as sample size increased.  No systematic 

results were found for number of items in the test, as the SEs fluctuated across boundary 

parameter and sample size. 

 

Table 5.  Item Parameter SE for the Polytomous Items for Xcalibre 4.1, 

 for N = 300, 500, 1,000, and 5,000 

No. Items &  SGRM GPCM 

Parameter 300 500 1000 2000 300 500 1000 2000 

50 Items 

 a .085 .069 .049 .038 .086 .073 .054 .040 

 b1 .201 .160 .109 .079 .226 .168 .122 .080 

 b2 .134 .100 .066 .049 .131 .104 .075 .047 

 b3 .114 .094 .068 .046 .133 .095 .077 .050 

 b4 .190 .150 .109 .077 .218 .161 .119 .084 

100 Items 

 a .085 .065 .046 .033 .081 .070 .051 .036 

 b1 .190 .154 .104 .076 .220 .175 .122 .082 

 b2 .118 .102 .066 .049 .145 .115 .081 .055 

 b3 .134 .095 .068 .049 .166 .110 .082 .052 

 b4 .205 .150 .110 .076 .239 .178 .125 .084 

200 Items 

 a .081 .067 .047 .035 .084 .066 .050 .038 

 b1 .195 .150 .106 .075 .233 .190 .126 .096 

 b2 .128 .094 .071 .048 .152 .126 .084 .069 

 b3 .136 .106 .071 .054 .133 .118 .087 .060 

 b4 .212 .165 .106 .083 .218 .176 .131 .087 
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RMSE 

The results for the RMSE mirrored those found for the SE, as seen in Table 6.  The 

RMSEs decreased as sample size increased.  In addition, the SGRM had lower RMSEs than the 

GPCM – a result that was most evident when the sample size was 500 or less. 

 

Table 6.  Item Parameter RMSE for the Polytomous Items for Xcalibre 4.1, 

 for N = 300, 500, 1,000, and 5,000 

No. Items & SGRM GPCM 

Parameter 300 500 1000 2000 300 500 1000 2000 

50 Items 

 a .089 .074 .050 .039 .094 .080 .057 .042 

 b1 .201 .160 .110 .082 .227 .171 .123 .080 

 b2 .134 .101 .067 .052 .131 .109 .076 .051 

 b3 .114 .096 .068 .046 .133 .097 .078 .050 

 b4 .191 .152 .109 .077 .218 .162 .120 .084 

100 Items 

 a .088 .068 .047 .035 .086 .073 .053 .038 

 b1 .190 .157 .105 .076 .221 .176 .123 .083 

 b2 .118 .103 .066 .049 .148 .118 .081 .055 

 b3 .134 .095 .069 .050 .170 .115 .082 .052 

 b4 .205 .151 .111 .077 .243 .182 .125 .084 

200 Items 

 a .086 .070 .050 .036 .090 .072 .054 .040 

 b1 .198 .153 .106 .077 .244 .192 .126 .096 

 b2 .128 .095 .071 .049 .172 .126 .084 .069 

 b3 .140 .106 .072 .054 .144 .120 .088 .060 

 b4 .220 .166 .108 .083 .228 .180 .134 .088 

 
Correlations 

The median correlations between the item parameters are presented in Table 7.  The 

values presented in Table 7 are the medians computed across the 20 replications.  The median 

correlations for the b parameter ranged from .973 to .998 for the dichotomous IRT models.  The 

correlations for the a and c parameters increased in strength as sample size increased.  The a and 

b parameter correlations were lower for the 3-parameter model than they were for the other 

models. 

 

The a parameter correlations for the SGRM and GPCM were similar in magnitude to 

those from  the dichotomous correlations.  As with the dichotomous models, the correlations 

increased as sample size increased.  For the 300 and 500 sample size conditions, the correlations 

were higher for the SGRM than they were for the GPCM.
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Table 7.  Median Correlations Between Estimated and Generated Item Parameters for Xcalibre 4.1,  

for N = 300, 500, 1,000, and 5,000 

Model and 50 Items 100 Items 200 Items 

Parameter 300 500 1000 2000 300 500 1000 2000 300 500 1000 2000 

1PL 

 b .988 .992 .995 .997 .985 .991 .994 .997 .985 .990 .995 .997 

2PL 

 a .890 .919 .959 .979 .876 .913 .957 .976 .860 .906 .951 .975 

 b .987 .991 .995 .998 .986 .991 .995 .998 .988 .992 .996 .998 

3PL 

 a .756 .845 .903 .938 .791 .838 .897 .942 .754 .823 .892 .934 

 b .973 .982 .989 .993 .976 .982 .989 .994 .976 .983 .989 .993 

 c .240 .363 .420 .514 .272 .378 .394 .481 .263 .333 .394 .505 

SGRM 

 a .876 .914 .958 .976 .889 .928 .964 .983 .887 .930 .965 .982 

GPCM 

 a .840 .898 .954 .972 .873 .914 .957 .977 .872 .913 .956 .978 
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Discussion 

Bias 

It was found that the a parameter for the dichotomous models showed some slight 

positive bias.  This bias decreased as the number of items increased.  The positive bias resulted 

from low a parameters being overestimated.  The b and c parameters showed no bias at the test 

level. 

 

The polytomous boundary parameters did show some bias for the 300 sample size 

condition.  However, the bias dissipated as sample size was increased.  It should be noted that the 

bias was larger for the GPCM than the SGRM model.  Recovery of the GPCM boundaries 

improved when there were at least 500 examinees. 

 

Overall, Xcalibre provided unbiased item parameter estimates at the test level.  This 

result is supported by the essentially zero median bias values observed for the a, b, and c 

parameter estimates.  In addition, the boundary location parameters for the polytomous models 

were estimated with minimal bias. 

 

SE and RMSE 

The results shown in Tables 2 and 3 revealed that the SEs of the 2-parameter a and b 

parameter estimates were lower than they were for the 3-parameter model.  This result was likely 

due to the addition of a guessing parameter.  Any estimation error in the guessing parameter 

would also increase the estimation error in the other item parameters, as well.  For this reason, 

the sample size requirement for the 3-parameter model is larger than it is for the 2-parameter 

model. 

 

Overall, the a and b parameter SEs were low and decreased rapidly as sample size 

increased.  This indicated that Xcalibre can provide stable item parameter estimates with low 

empirical SEs.  The guessing parameter showed low median empirical SEs and RMSEs.  This 

suggested that Xcalibre was able to estimate the c parameter quite well, even for a sample size of 

300. 

 

For the polytomous models it was found that the SEs and RMSEs for the SGRM were 

generally lower than they were for the GPCM.  This result was strongest for the 300 and 500 

examinee conditions.  This provided evidence that the GPCM required larger sample sizes for 

stable estimates than the SGRM. 
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The SEs and RMSEs for the polytomous models indicate that the a parameters were 

recovered well.  In addition, the SEs decreased rapidly with increased sample size and indicated 

that Xcalibre can provide stable estimates for samples larger than 300 examinees. 

Correlations 

The correlations between the item parameters followed the trend observed by Yoes 

(1995).  The correlations were strongest for the b parameter, second strongest for the a 

parameter, and weakest for the c parameter.  The magnitude of the correlations can be explained 

by the lower variance in the a and c parameters compared to the b parameter.  The extremely 

high correlations (.973 to .998 ) provide evidence for the calibration accuracy of Xcalibre 4.1. 

Conclusions 

Dichotomous item parameters were recovered with little bias and low SEs, provided 

samples of at least 300 were used.  The polytomous parameters were recovered with little bias 

(with samples of at least 500) and SEs that quickly decreased as sample size increased.  The 

results of this study indicated that Xcalibre provides stable and unbiased item parameter 

estimates.  However, note that the accuracy of parameter estimates increased substantially with 

sample sizes of 1,000 or 2,000, even for the Rasch model. 
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